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Abstract. The 19-vertex models of Zalomodchikov–Fateev, Izergin–Korepin and the
supersymmetricosp(1|2) with periodic boundary conditions are studied. We find the spectrum
of these quantum spin chains using the coordinate Bethe ansatz. The approach is a suitable
parametrization of their wavefunctions. We also applied the algebraic Bethe ansatz in order to
obtain the eigenvalues and eigenvectors of the corresponding transfer matrices.

1. Introduction

One-dimensional quantum spin-chain Hamiltonians and classical statistical systems in two
spatial dimensions on a lattice (vertex models), share a common mathematical structure
responsible for our understanding of these integrable models [1, 2]. If the Boltzmann weights
underlying the vertex models are obtained from solutions of the Yang–Baxter (YB) equation
the commutativity of the associated transfer matrices follows immediately, leading to their
integrability.

The Bethe ansatz (BA) is the powerful method in the analysis of integrable quantum
models. There are several versions: coordinate BA [3], algebraic BA [4], analytical BA [5],
etc developed for diagonalization of the corresponding Hamiltonian.

The simplest version is the coordinate BA. In this framework one can obtain the
eigenfunctions and the spectrum of the Hamiltonian from its eigenvalue problem. It is really
simple and clear for the two-state models like the six-vertex models but becomes awkward for
models with a higher number of states.

The algebraic BA, also known as as quantum inverse scattering method, is an elegant
and important generalization of the coordinate BA. It is based on the idea of constructing
eigenfunctions of the Hamiltonian via creation and annihilation operators acting on a reference
state. Here one uses the miraculous fact that the YB equation can be recast in the form of
commutation relations for the matrix elements of the monodromy matrix, which play the role of
creation and annihilation operators. From this monodromy matrix we obtain the transfer matrix
which, by construction, commutes with the Hamiltonian. Thus, constructing eigenfunctions
of the transfer matrix determines the eigenfunctions of the Hamiltonian.

On imposing appropriate boundary conditions the BA method leads to a system of
equations, the BA equations, which are useful in the thermodynamic limit. The energy of
the ground state and its excitations, velocity of sound, etc, may be calculated in this limit.
Moreover, in recent years we have witnessed another very fruitful connection between the
BA method and conformal field theory. Using the algebraic BA, Korepin [6] found various
representations of correlators in integrable models and more recently Babujian and Flume [7]
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developed a method from the algebraic BA which reveals a link to the Gaudin model and
renders in the quasiclassical limit, solutions of the Knizhnik–Zamolodchikov equations for the
SU(2) Wess–Zumino–Novikov–Witten conformal theory.

Integrable quantum systems containing Fermi fields have been attracting increasing
interest due to their potential applications in condensed matter physics. The prototypical
examples of such systems are the supersymmetric generalizations of the Hubbard andt–J
models [8]. They lead to a generalization of the YB equation associated with the introduction
of aZ2 grading [9], which leads to the appearance of additional signs in the YB equation.

In this paper we consider the coordinate and algebraic versions of the BA for the
trigonometric three-state vertex models of 19 vertices with periodic boundary conditions.
These models are well known in the literature: the Zamolodchikov–Fateev (ZF) model or
A1

1 model [10], the Izergin–Korepin (IK) model orA2
2 model [11] and the supersymmetric

osp(1|2) model [12].
While the BA solution of the periodic ZF model was derived by a fusion procedure [13]

in [14, 15], a generalization of the algebraic BA was developed by Tarasov [16] to solve the
IK model. Moreover, the IK model was solved via coordinate BA by Batcheloret al in [17].

In the context of the algebraic BA, the version presented here is based on the Tarosov
approach but now we include the ZF model and we also extend it to the graded version of the
quantum inverse scattering method in order to consider theosp(1|2) model.

In the context of the coordinate BA, we propose here a new parametrization of
wavefunctions. This result is of fundamental importance since it allows us to treat these 19-
vertex models in the same way and the coordinate BA for these three-states models becomes
simple enough as for two-state models.

The main goal in this paper is to reveal the common structure of these 19-vertex models
which permits us to apply the BA method, unifying old and new results.

The paper is organized as follows. In section 2 we present the models. In section 3 the
spectra of the corresponding Hamiltonians are derived using the coordinate BA and in section 4
the algebraic BA is also used to diagonalize the corresponding transfer matrices. We justify
this twofold presentation remarking that the BA method is apparently version dependent. It
means that when one solves a model using a particular BA version is not always clear how to
extend the solution for all possible versions. For example, the biquadratic model was solved by
coordinate BA in [18, 19] and its algebraic BA version is still unknown. Finally, the conclusions
are reserved for section 5.

2. Description of the models

Let us start with the graded formulation and then recover the non-graded formulation from it.
ConsiderV = V0⊕ V1 aZ2-graded vector space where 0 and 1 denote the even and odd

parts, respectively. The multiplication rules in the graded tensor product spaceV
s⊗ V differ

from the ordinary ones by the appearance of additional signs. The components of a linear

operatorA
s⊗ B ∈ V s⊗ V result in matrix elements of the form

(A
s⊗ B)γ δαβ = (−)p(β)(p(α)+p(γ )) AαγBβδ. (2.1)

The action of the graded permutation operatorP on the vector|α〉 s⊗ |β〉 ∈ V s⊗ V is defined
by

P |α〉 s⊗ |β〉 = (−)p(α)p(β)|β〉 s⊗ |α〉 H⇒ (P)γ δαβ = (−)p(α)p(β)δαδ δβγ (2.2)

wherep(α) = 1 (0) if |α〉 is an odd (even) element.



Bethe ans̈atze for 19-vertex models 1821

The central object in the theory of integrable models is theR-matrixR(λ), whereλ is the
spectral parameter. It acts on the tensor productV 1⊗ V 2 for a given vector spaceV and it is
a solution of the Yang–Baxter (YB) equation

R12(λ)R13(λ +µ)R23(µ) = R23(µ)R13(λ +µ)R12(λ) (2.3)

in V 1⊗ V 2⊗ V 3, whereR12 = R⊗ I,R23 = I ⊗R, etc.
In the graded case,R13, however, does not act trivially on the second space due to signs

generated by commuting odd operators. In this case, the graded YB equation in components
reads

Rkk′ii ′ (λ)R
jk
′′

ki
′′ (λ +µ)Rj

′j ′′

k′k′′ (µ)(−)p(k
′)(p(i ′′ )+p(k′′ ))

= Rk′k′′
i ′i ′′ (µ)R

kj
′′

ik
′′ (λ +µ)Rjj

′

kk
′ (λ)(−)p(k

′
)(p(j

′′
)+p(k

′′
)). (2.4)

BesidesR we have to consider matricesR = PR which satisfy

R12(λ)R23(λ +µ)R12(µ) = R23(µ)R12(λ +µ)R23(λ). (2.5)

Because onlyR12 andR23 are involved, equation (2.5) written in components looks the same
as in the non-graded case. Moreover, the matricesRng = PR satisfy the ordinary YB
equation (2.3) whereP is the non-graded permutation operator.

2.1. TheR-matrices

We will consider 19-vertex models for which theirR-matrices have a common form

R(λ) =



x1 0 0 0 0 0 0 0 0
0 y5 0 x2 0 0 0 0 0
0 0 y7 0 y6 0 x3 0 0

0 x2 0 x5 0 0 0 0 0
0 0 εy6 0 εx4 0 εx6 0 0
0 0 0 0 0 y5 0 x2 0

0 0 x3 0 x6 0 x7 0 0
0 0 0 0 0 x2 0 x5 0
0 0 0 0 0 0 0 0 x1



. (2.6)

Here we have assumed that the grading of threefold space isp(1) = 1,p(2) = ε andp(3) = 1,
whereε = ±. The matrix elementsxi andyi for each model will be listed below.

ZF R-matrix. The simplest 19-vertex model is the ZF model orA1
1 model. The solution of

the YB equation was found in [10]. It can also be constructed from the six-vertex model using
the fusion procedure. The correspondingR-matrix has the form (2.6) withε = 1 and

x1(λ) = sinh(λ + η) sinh(λ + 2η)

x2(λ) = sinhλ sinh(λ + η)

x3(λ) = sinhλ sinh(λ− η)
x5(λ) = y5(λ) = sinh(λ + η) sinh 2η

x6(λ) = y6(λ) = sinhλ sinh 2η

x7(λ) = y7(λ) = sinhη sinh 2η

x4(λ) = x2(λ) + x7(λ).

(2.7)
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IK R-matrix. The solution of this YB equation was found in [11]. It cannot be constructed
from the six-vertex model using the fusion procedure. TheR-matrix has the form (2.6) with
ε = 1 and

x1(λ) = sinh(λ− 5η) + sinhη

x2(λ) = sinh(λ− 3η) + sinh 3η

x3(λ) = sinh(λ− η) + sinhη

x4(λ) = sinh(λ− 3η) + sinh 3η − sinh 5η + sinhη

x5(λ) = − sinh 2η
(
e−λ+3η + e−3η

)
y5(λ) = − sinh 2η

(
eλ−3η + e3η

)
x6(λ) = e2η sinh 2η

(
1− e−λ

)
y6(λ) = e−2η sinh 2η

(
1− eλ

)
x7(λ) = −2e−λ+2η sinhη sinh 2η − e−η sinh 4η

y7(λ) = 2eλ−2η sinhη sinh 2η − eη sinh 4η.

(2.8)

Osp(1|2) R-matrix. The trigonometric solution of the graded YB equation for the
fundamental representation ofosp(1|2) algebra was found by Bazhanov and Shadrikov in
[12]. It has the form (2.6) withε = −1 and

x1(λ) = sinh(λ + 2η) sinh(λ + 3η)

x2(λ) = sinhλ sinh(λ + 3η)

x3(λ) = sinhλ sinh(λ + η)

x4(λ) = sinhλ sinh(λ + 3η)− sinh 2η sinh 3η
x5(λ) = e−λ/3 sinh 2η sinh(λ + 3η)
y5(λ) = eλ/3 sinh 2η sinh(λ + 3η)
x6(λ) = −e−λ/3−2η sinh 2η sinhλ
y6(λ) = eλ/3+2η sinh 2η sinhλ
x7(λ) = eλ/3 sinh 2η

(
sinh(λ + 3η) + e−η sinhλ

)
y7(λ) = e−λ/3 sinh 2η

(
sinh(λ + 3η) + eη sinhλ

)
.

(2.9)

The rational limit of (2.9) is well known in the literature [20] and can be written in the
form

R(λ, η) = ηI + λP +
λη

λ + 3
2η
U (2.10)

whereI is the identity operator,P is the graded permutation operator (2.2) andU is the rank-
one projectorU2 = U . The algebraic solution of (2.10) was obtained by Martins [21], as a
limit of the algebraic solution of the IK model.

2.2. The Hamiltonians

In order to derive the Hamiltonian, it is convenient to expand theR-matrix around the
regular pointλ = 0. For the 19-vertex models the corresponding solutions with the standard
normalization can be read directly from (2.6). They have the form

R(λ, η) ∼ I + λ(α−1H + βI) + o(λ2) (2.11)

whereα andβ are scalar functions.
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The Hamiltonian is a local sum given by

H =
N−1∑
k=1

Hk,k+1 +HN,1 (2.12)

whereHk,k+1 is theH in (2.11) acting on the quantum spaces at sitesk andk + 1. Using a spin
language, this is a spin-1 Hamiltonian. In the basis whereSzk is diagonal with eigenvectors
|+, k〉, |0, k〉, |−, k〉 and eigenvalues 1, 0,−1, respectively, the Hamiltonian densities acting
on two neighbouring sites are then given by

Hk,k+1 =

|++〉
|+0〉
|+−〉
|0+〉
|00〉
|0−〉
|−+〉
|−0〉
|−−〉



z1 0 0 0 0 0 0 0 0
0 z̄5 0 1 0 0 0 0 0
0 0 z̄7 0 z̄6 0 z3 0 0
0 1 0 z5 0 0 0 0 0
0 0 εz̄6 0 εz4 0 εz6 0 0
0 0 0 0 0 z̄5 0 1 0
0 0 z3 0 z6 0 z7 0 0
0 0 0 0 0 1 0 z5 0
0 0 0 0 0 0 0 0 z1


k,k+1

(2.13)

where the matrix elements for each model are:

ZF Hamiltonian. For the ZF model the corresponding quantum spin chain is the spin-1XXZ

model. The two-site Hamiltonian is derived from (2.11) and has the form (2.13) with

ε = 1 α = sinh 2η β = 0

z1 = 0 z3 = −1 z4 = −2 cosh 2η (2.14)

z5 = z̄5 = − cosh 2η z6 = z̄6 = 2 coshη z7 = z̄7 = −1− 2 cosh 2η.

IK Hamiltonian. In the IK model the two-site Hamiltonian for the corresponding quantum
chain has the form (2.13) with

ε = 1 α = −2 sinh 2η β = 0

z1 = 0 z3 = coshη

cosh 3η
z4 = −2

sinh 4η sinhη

cosh 3η

z5 = −e−2η z̄5 = −e2η (2.15)

z6 = e2η sinh 2η

cosh 3η
z̄6 = −e−2η sinh 2η

cosh 3η

z7 = −e−4η coshη

cosh 3η
z̄7 = −e4η coshη

cosh 3η
.
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Osp(1|2) Hamiltonian. The two-site quantum Hamiltonian associated with theosp(1|2)
model has the form (2.13) with

ε = −1 α = sinh 2η β = − coth 2η

z1 = cosh 2η z3 = sinhη

sinh 3η
z4 = 1 + coth 3η sinh 2η

z5 = −sinh 2η

3
z̄5 = −z5 (2.16)

z6 = −e−2η sinh 2η

sinh 3η
z̄6 = e2η sinh 2η

sinh 3η

z7 = sinh 2η

3
+ e−η

sinh 2η

sinh 3η
z̄7 = −sinh 2η

3
+ eη

sinh 2η

sinh 3η
.

Having now built a common ground for these models, we may proceed to find their spectra.
We begin with the coordinate BA because of its simplicity.

3. The coordinate Bethe ansatz

In this section results are presented for a periodic quantum spin chain ofN atoms each with
spin 1 described by the Hamiltonian (2.12). At each site, thespin variablemay be +1, 0,−1, so
that the Hilbert space of the spin chain isH(N) = ⊗NV whereV = C3 with basis{|+〉, |0〉, |−〉}.
The dimension of the Hilbert space is dimH(N) = 3N . OnH(N) we consider the Hamiltonians
presented in the previous section.

From (2.12) one can see thatH commutes with the operator which shifts the states of
the chain by one unit. This means translational invariance ofH . Moreover, the Hamiltonian
(2.12) preserves the third component of thespin,[

H, SzT
] = 0 SzT =

N∑
k=1

Szk . (3.1)

This allows us to divide the Hilbert space of states into different sectors, each labelled by the
eigenvalue of the operator numberr = N − SzT . We shall denote byH(N)n the subspace of
H(N) with r = n. One can easily see that dimH(N) =∑N

r=0 dimH(N)r with

dimH(N)r =
[ 1

2 r]∑
k=0

(
N

r − 2k

)(
N − r + 2k

k

)
(3.2)

where
[

1
2r
]

means the integer part of1
2r.

3.1. Sectorr = 0

The sectorH(N)0 contains only one state, thereference state, with all spin values equal to
+1, 90 =

∏
k |+, k〉, satisfyingH90 = E090, with E0 = Nz1. All other energies will

be measured relative to this state. It means that we will seek eigenstates ofH satisfying
(H −Nz1)9r = εr9r , in every sectorr.

3.2. Sectorr = 1

InH(N)1 , the subspace of states with all spin values equal to +1 except one with value 0. There
areN states|k[0]〉 = ∣∣+ + +0

k
+ + · · · + 〉 which span a basis ofH(N)1 . The ansatz for the
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eigenstate is thus of the form

91 =
N∑
k=1

A(k) |k[0]〉. (3.3)

The unknown wavefunctionA(k) determines the probability that thespin variablehas the
value 0 at the sitek.

From the complete invariance translational due to the periodic boundary conditions, it
follows thatA(k) is just the wavefunction for a plane wave

A(k) = ξk (3.4)

where ξ = eiθ , θ being some particular momentum fixed by the boundary condition
A(N + k) = A(k).

WhenH acts on|k[0]〉, it sees the reference configuration, except in the vicinity ofk, and
using (2.13) we obtain the eigenvalue equations

(ε1 + 2z1− z5− z̄5) A(k) = A(k − 1) +A(k + 1). (3.5)

The plane-wave parametrization (3.4) solves (3.5) provided

ε1 = −2z1 + z5 + z̄5 + ξ + ξ−1. (3.6)

Thus91 is the eigenstate ofH in the sectorr = 1 with eigenvalueE1 = (N − 2z1)+ z5 + z̄5 +
2 cosθ , whereθ = 2πl/N , l = 0, 1, . . . , N − 1.

3.3. Sectorr = 2

In the Hilbert spaceH(N)2 we haveN states of the type|k[−]〉 = ∣∣++−
k

++· · ·+〉andN(N−1)/2

states of the type|k1[0], k2[0]〉 = ∣∣+ + 0
k1

+ + 0
k2

+ + · · ·+ 〉. We seek these eigenstates in the form

92 =
∑
k1<k2

A(k1, k2) |k1[0], k2[0]〉 +
N∑
k=1

B(k) |k[−]〉. (3.7)

The periodicity condition now reads

A(k2, N + k1) = A(k1, k2) and B(N + k) = B(k). (3.8)

Following Bethe [3], the wavefunctionA(k1, k2) can be parametrized using the superposition
of plane waves (3.4) including the scattering of twopseudoparticleswith momentaθ1 andθ2,
(ξj = eiθj , j = 1, 2):

A(k1, k2) = A12ξ
k1
1 ξ

k2
2 +A21ξ

k2
1 ξ

k1
2 (3.9)

which satisfy the periodic boundary condition (3.8) provided

A12 = A21ξ
N
1 A21 = A12ξ

N
2 (3.10)

and the parametrization ofB(k) is still undetermined at this stage.
Before we try to parametrizeB(k) let us consider the Schrödinger equation(E2 −

Nz1)92 = ε292. From the explicit form ofH acting on two sites (2.13) we derive the
following set of eigenvalue equations:

(ε2 + 4z1− 2z5− 2z̄5) A(k1, k2) = A(k1− 1, k2) +A(k1 + 1, k2)

+A(k1, k2 − 1) +A(k1, k2 + 1) (3.11)

(ε2 + 3z1− z5− z̄5− εz4) A(k, k + 1) = A(k − 1, k + 1) +A(k, k + 2)

+εz̄6B(k + 1) + εz6B(k) (3.12)

(ε2 + 2z1− z7− z̄7) B(k) = z3B(k − 1) + z3B(k + 1) + z̄6A(k − 1, k) + z6A(k, k + 1).

(3.13)
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The parametrization (3.9) solves the equations (3.11) provided

ε2 = −4z1 + 2z5 + 2z̄5 + ξ1 + ξ−1
1 + ξ2 + ξ−1

2 . (3.14)

It follows immediately that the eigenvalues ofH are a sum of single pseudoparticle energies.
The parametrization ofB(k) can now be determined in the following way: subtracting

equation (3.12) from equation (3.11) fork1 = k, k2 = k + 1, we obtain ameeting equation

εz̄6B(k + 1) + εz6B(k) = A(k, k) +A(k + 1, k + 1)− (z1 + εz4 − z5− z̄5) A(k, k + 1).

(3.15)

Now we extend the parametrization (3.9) tok1 = k2 in order to obtain a parametrization for
the wavefunctionB(k):

B(k) = B(ξ1ξ2)
k (3.16)

which solves the meeting equation (3.15) provided

B = ε1 + ξ1ξ2 −11ξ2

z6 + z̄6xi1ξ2
A12 + ε

1 + ξ1ξ2 −11ξ1

z6 + z̄6ξ1ξ2
A21

11 = z1 + εz4 − z5− z̄5.

(3.17)

These relations tell us that the pseudoparticle of the type|k[−]〉 behaves as the two
pseudoparticles|k1[0]〉 and |k2[0]〉 at the same sitek and its parametrization follows as the
plane waves of particles|ki [0]〉 multiplied by the weight functionB = B(ξ1, ξ2).

Now substituting (3.9), (3.14) and (3.16) into equation (3.13) we find the phase shift of
two pseudoparticles,

A21

A12
≡ 812 = − (1 + ξ1ξ2)

2 − (1 + ξ1ξ2)(12ξ1 +13ξ2) +14ξ1ξ2 +15ξ
2
2

(1 + ξ1ξ2)2 − (1 + ξ1ξ2)(12ξ2 +13ξ1) +14ξ1ξ2 +15ξ
2
1

(3.18)

where

12 = 1

z3

13 = 1

z3
+
ε

z3
(z3z4 − z6z̄6) + (z1− z5− z̄5)

14 = 1

z3
(εz4 + z7 + z̄7) +

3

z3
(z1− z̄5− z5)− 2

15 = 1

z3
(εz4 + z1− z̄5− z5).

(3.19)

Combining this result with the periodic relations (3.10) and using (2.15)–(2.17) we arrive at
the BA equations inH(N)2 for each model:

ξN2 = −
(

1 + ξ1ξ2 + ξ1 + ξ2 − (1 + 2)ξ2

1 + ξ1ξ2 + ξ1 + ξ2 − (1 + 2)ξ1

)
(3.20)

for the ZF model,

ξN2 = −
(

1 + ξ1ξ2 −1ξ2

1 + ξ1ξ2 −1ξ1

)(
1 + ξ1ξ2 − ξ1− ξ2 + (1− 2)ξ1

1 + ξ1ξ2 − ξ1− ξ2 + (1− 2)ξ2

)
(3.21)

for the IK model and for theosp(1|2) model we obtain

ξN2 = −
(

1 + ξ1ξ2 −1ξ2

1 + ξ1ξ2 −1ξ1

)(
1 + ξ1ξ2 + ξ1 + ξ2 − (1 + 2)ξ1

1 + ξ1ξ2 + ξ1 + ξ2 − (1 + 2)ξ2

)
(3.22)

where

1 = 2 cosh 2η and (ξ1ξ2)
N = 1. (3.23)
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3.4. Sectorr = 3

Now the Hilbert space isH(N)3 where there areN(N − 1)(N − 2)/6 states of the type
|k1[0], k2[0], k3[0]〉, N(N − 1)/2 states of the type|k1[−], k2[0]〉 andN(N − 1)/2 states
of the type|k1[0], k2[−]〉. We seek eigenfunctions of the form

93 =
∑

k1<k2<k3

A(k1, k2, k3) |k1[0], k2[0], k3[0]〉

+
∑
k<k

{B1(k1, k2) |k1[−], k2[0]〉 +B2(k1, k2) |k1[0], k2[−]〉}. (3.24)

Periodic boundary conditions now read as

A(k2, k3, N + k1) = A(k1, k2, k3) B2(k2, N + k1) = B1(k1, k2). (3.25)

Again, the wavefunctionsA(k1, k2, k3) can be parametrized by the superposition of plane
waves

A(k1, k2, k3) = A123ξ
k1
1 ξ

k2
2 ξ

k3
3 +A132ξ

k1
1 ξ

k3
2 ξ

k2
3 +A213ξ

k2
1 ξ

k1
2 ξ

k3
3 +A231ξ

k2
1 ξ

k3
2 ξ

k1
3

+A312ξ
k3
1 ξ

k1
2 ξ

k2
3 +A123ξ

k3
1 ξ

k2
2 ξ

k1
3 (3.26)

which satisfy the periodic boundary condition provided

A231

A123
= A321

A213
= ξN3

A213

A132
= A312

A231
= ξN2

A123

A312
= A132

A321
= ξN1 . (3.27)

These relations tell us that the interchange of two pseudoparticles is independent of the position
of the third pseudoparticle. UsingS-matrix language, this locality of the interactions is
equivalent to the factorization property of theS-matrix, according to which the scattering
amplitude of three particles factorizes into a product of three two-pointS-matrices.

Action of H on these eigenstates gives the following set of coupled equations for
A(k1, k2, k3) andBi(k1, k2), i = 1, 2:

(ε3 + 6z1− 3z5− 3z̄5) A(k1, k2, k3) = A(k1− 1, k2, k3) +A(k1 + 1, k2, k3)

+A(k1, k2 − 1, k3) +A(k1, k2 + 1, k3) +A(k1, k2, k3− 1) +A(k1, k2, k3 + 1).

(3.28)

These equations show us the action ofH in configurations of the Hilbert spaceH(N)3 for which
the three pseudoparticles (|ki [0]〉, i = 1, 2, 3) are separated. We already know that they are
satisfied with the plane-wave parametrization (3.26) and that

ε3 =
3∑
j=1

(−2z1 + z5 + z̄5 + ξj + ξ−1
j ). (3.29)

For configurations where two pseudoparticles are neighbours atk1 and the third pseudoparticle
is atk2 > k1 + 2,H gives us the following equations:

(ε3 + 5z1− 2z5− 2z̄5− εz4) A(k1, k1 + 1, k2) = A(k1− 1, k1 + 1, k2) +A(k1, k1 + 2, k2)

+A(k1, k1 + 1, k2 − 1) +A(k1, k1 + 1, k2 + 1)

+εz̄6B1(k1 + 1, k2) + εz6B1(k1, k2) (3.30)

and a similar set of equations couplingB2(k1, k2) andA(k1, k2, k3), which correspond to the
meeting of two pseudoparticles on the right-hand side of the third pseudoparticle.

Comparing equation (3.30) with equation (3.28) we obtain a consistency equation

εz̄6B1(k1 + 1, k2) + εz6B1(k1, k2) = A(k1, k1, k2) +A(k1 + 1, k1 + 1, k2)

−11A(k1, k1 + 1, k2). (3.31)
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Similarly, for the right-hand side meeting we obtain

εz̄6B2(k1, k2 + 1) + εz6B2(k1, k2) = A(k1, k2, k2) +A(k1, k2 + 1, k2 + 1)

−11A(k1, k1 + 1, k2). (3.32)

These consistency equations are solved by the following parametrization of the
wavefunctionsBi(k1, k2), i = 1, 2:

B1(k1, k2) = B11(ξ1ξ2)
k1ξ

k2
3 +B12(ξ1ξ3)

k1ξ
k2
2 +B13(ξ2ξ3)

k1ξ
k2
1

B2(k1, k2) = B21ξ
k1
1 (ξ2ξ3)

k2 +B22ξ
k1
2 (ξ1ξ3)

k2 +B23ξ
k1
3 (ξ1ξ2)

k2
(3.33)

which satisfy the periodic boundary condition provided

B21 = ξN1 B13 B22 = ξN2 B12 B23 = ξN3 B11. (3.34)

Moreover, the weight functionsB1i andB2i , i = 1, 2, 3 are determined

B11 = F12A123 + F21A213 B21 = F23A123 + F32A132

B12 = F13A132 + F31A231 B22 = F13A213 + F31A312

B13 = F23A312 + F23A321 B23 = F12A231 + F21A321

(3.35)

where

Fab = ε1 + ξaξb −11ξb

z6 + z̄6ξaξb
a 6= b = 1, 2, 3. (3.36)

Substituting these relations into the eigenvalue equations (3.30) we obtain the phase shift of
two pseudoparticles

A123

A213
= A231

A321
= 812

A132

A231
= A213

A312
= 813

A312

A321
= A123

A132
= 823 (3.37)

where

8ab = − (1 + ξaξb)2 − (1 + ξaξb)(12ξa +13ξb) +14ξaξb +15ξ
2
b

(1 + ξaξb)2 − (1 + ξaξb)(12ξb +13ξa) +14ξaξb +15ξ2
a

a 6= b = 1, 2, 3

(3.38)

and the1i, i = 1, 2, 3, 4 are given by (3.17) and (3.19)
Next, when the three pseudoparticles are neighbours we have the following eigenvalue

equations:

(ε3 + 4z1− z5− z̄5− 2εz4) A(k, k + 1, k + 2) = A(k − 1, k + 1, k + 2) +A(k, k + 1, k + 3)

+εz̄6B1(k + 1, k + 2) + εz6B1(k, k + 2) + εz̄6B2(k, k + 2) + εz6B2(k, k + 1)

(3.39)

which are automatically satisfied by the above parametrizations.
In addition to these equations we also have to consider the equations for configurations

where the pseudoparticle of type|k[−]〉 and the pseudoparticle|k[0]〉 are separated:

(ε3 + 4z1− z5− z̄5− z̄7− z7) B1(k1, k2) = B1(k1, k2 − 1) +B1(k1, k2 + 1)

+z3B1(k1− 1, k2) + z3B1(k1 + 1, k2) + z̄6A(k1− 1, k1, k2)

+z6A(k1 + 1, k1, k2) (3.40)

and a similar set of eigenvalue equations involvingB2(k1, k2), which corresponds to
configurations with the pseudoparticle|k2[−]〉 on the right-hand side of the pseudoparticle
|k1[0]〉.
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These equations are also satisfied by the above parametrizations. This statement was
already expected since at this point we always have afar particle as aviewer. Therefore, none
of the configurations appeared to be different from those presented in the sectorr = 2.

Finally, the action ofH on configurations where the two different pseudoparticles are
neighbours results in two more eigenvalue equations:

(ε3 + 3z1− z̄7− 2z̄5) B1(k, k + 1) = B1(k, k + 2) +B2(k, k + 1) + z3B1(k − 1, k + 1)

+z̄6A(k − 1, k, k + 1) (3.41)

and

(ε3 + 3z1− z7− 2z5) B2(k, k + 1) = B2(k − 1, k + 1) +B1(k, k + 1) + z3B2(k, k + 2)

+z6A(k, k + 1, k + 2). (3.42)

Substituting the wavefunction parametrizations forA(k1, k2, k3) andBi(k1, k2) into the
equations (3.41) and (3.42) and using the relations (3.27) and (3.37) one can verify that they
are indeed satisfied. These results tell us that the meeting of the pseudoparticle|k[−]〉 with
the pseudoparticle|k[0]〉 can be versed as a meeting of three-pseudoparticle|k[0]〉.

Compounding (3.37) with the periodic boundary conditions (3.27) we arrive to the BA
equations for the sectorr = 3

ξNa =
3∏
b 6=a

8ab a = 1, 2, 3 (3.43)

which expresses the factorization of the three-pseudoparticle phase shift into the product of
two-pseudoparticles phase shifts.

3.5. General sector

The above results can now be generalized. First we observe that in the sectorr > 3 there are
no additional meeting conditions. For example, in the sectorr = 4 there is a meeting of two
pseudoparticles of the type|k[−]〉. Nevertheless, we know that the state|k[−]〉 is parametrized
as two states|k[0]〉 at the same site and we have verified that the meeting of two pseudoparticles
|k[−]〉 behaves as the meeting of four pseudoparticles|k[0]〉 whose phase shift factorizes in a
product of two-pseudoparticles phase shifts.

In a generic sectorr we build eigenstates ofH out of translationally invariant products of
N0 one-pseudoparticle eigenstates|k[0]〉 andN− two-pseudoparticle eigenstates|k[−]〉, such
thatr = N0 + 2N−. These eigenstates are obtained by superposition of terms of the form

|φr〉 = |0〉 × |φr−1〉 + |−〉 × |φr−2〉 (3.44)

with |φ0〉 = 1, |φ1〉 = |0〉. The corresponding eigenvalue is a sum of single one-particle
energies

Er = Nz1 +
r∑
a=1

(−2z1 + z5 + z̄5 + ξa + ξ−1
a

)
(3.45)

beingξa solutions of the BA equations

ξNa =
r∏

b 6=a=1

8ab a = 1, 2, . . . , r (3.46)

where

8ab = −
(

1 + ξaξb + ξa + ξb − (1 + 2)ξb
1 + ξaξb + ξa + ξb − (1 + 2)ξa

)
a, b = 1, 2, . . . , r 1 = 2 cosh 2η

(3.47)
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for the ZF model,

8ab = −
(

1 + ξaξb −1ξb
1 + ξaξb −1ξa

)(
1 + ξaξb − ξa − ξb + (1− 2)ξa
1 + ξaξb − ξa − ξb + (1− 2)ξb

)
a, b = 1, 2, . . . , r 1 = 2 cosh 2η

(3.48)

for the IK model and

8ab = −
(

1 + ξaξb −1ξb
1 + ξaξb −1ξa

)(
1 + ξaξb + ξa + ξb − (1 + 2)ξa
1 + ξaξb + ξa + ξb − (1 + 2)ξb

)
a, b = 1, 2, . . . , r 1 = 2 cosh 2η

(3.49)

for theosp(1|2) model.

4. The algebraic Bethe ansatz

In the previous section we have considered the problem of diagonalization of a one-dimensional
spin-chain Hamiltonian using the coordinate BA. Let us now turn to two-dimensional classical
statistical systems on a lattice.

Let us consider a regular lattice withN columns andN ′ rows. A physical state on this
lattice is defined by the assignment of astate variableto each lattice edge. If one takes the
horizontal direction as space and the vertical one as time, the transfer matrix plays the role of
a discrete evolution operator acting on the Hilbert spaceH(N) spanned by therow stateswhich
are defined by the set of vertical link variables on the same row. Thus, the transfer matrix
elements can be understood as the transition probability of the one-row state to project on the
consecutive one after a unit of time.

The main problem now is the diagonalization of the transfer matrix of the lattice system.
To do this we request the algebraic BA.

Again, we start with the graded formulation such that the additional signs are represented
by ε = −1. Takingε = 1 we recover the non-graded cases.

We recall some basic relations of the graded quantum inverse scattering method. For
us the basic object will be theR-matrix (2.6), which satisfiesR(0, η) = ρ(η) I, where
ρZF(η) = sinhη sinh 2η, ρIK (η) = − sinh 5η + sinhη andρosp(η) = sinh 2η sinh 3η.

A quantum-integrable system is characterized by monodromy matrixT (λ) satisfying the
equation

R(λ− µ)[T (λ) s⊗ T (µ)] = [T (µ) s⊗ T (λ)]R(λ− µ) (4.1)

whose consistency is guaranteed by the YB equation (2.5).T (λ) is a matrix in the spaceV with
matrix elements that are operators on the states of the quantum system (the quantum space,
which will also be the spaceV ). The spaceV is called auxiliary space ofT (λ). An example
of a monodromy matrix is the matrixPR, this follows directly from (4.1).

The simplest monodromies have become known asL operators, the Lax operator, and the
monodromy operatorT (λ) is defined as an ordered product of Lax operators on all sites of the
lattice:

T (λ) = LN(λ)LN−1(λ) . . .L1(λ). (4.2)
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The Lax operator on thenth quantum space is given the graded permutation of (2.6):

Ln(λ) =



x1 0 0 0 0 0 0 0 0
0 x2 0 x5 0 0 0 0 0
0 0 x3 0 x6 0 x7 0 0
0 y5 0 x2 0 0 0 0 0
0 0 y6 0 x4 0 x6 0 0
0 0 0 0 0 x2 0 x5 0
0 0 y7 0 y6 0 x3 0 0
0 0 0 0 0 y5 0 x2 0
0 0 0 0 0 0 0 0 x1



=


L
(n)
11 (λ) L

(n)
12 (λ) L

(n)
13 (λ)

L
(n)
21 (λ) L

(n)
22 (λ) L

(n)
23 (λ)

L
(n)
31 (λ) L

(n)
32 (λ) L

(n)
33 (λ)

 . (4.3)

Note thatL(n)ij (λ), i, j = 1, 2, 3 are 3× 3 matrices acting on thenth site of the lattice. It
means that the monodromy matrix has the form

T (λ) =
 T11(λ) T12(λ) T13(λ)

T21(λ) T22(λ) T23(λ)

T31(λ) T32(λ) T33(λ)

 =
 A1(λ) B1(λ) B2(λ)

C1(λ) A2(λ) B3(λ)

C2(λ) C3(λ) A3(λ)

 (4.4)

where

Tij (λ) =
3∑

k1,...,kN−1=1

L
(N)
ik1
(λ)

s⊗ L(N−1)
k1k2

(λ)
s⊗ · · · s⊗ L(1)kN−1j

(λ) i, j = 1, 2, 3. (4.5)

The vector|0〉 in the quantum space of the monodromy matrixT (λ) that is annihilated
by the operatorsTij (λ), i > j (Ck(λ) operators,k = 1, 2, 3) and is an eigenvector for the
operatorsTii(λ) (Ak(λ) operators,k = 1, 2, 3) is called a highest vector of the monodromy
matrixT (λ).

The transfer matrixτ(λ) of the corresponding integrable spin model is given by the
supertrace of the monodromy matrix in the spaceV , StrT (λ). It is the generating function of
the family of commuting operators in terms of which the Hamiltonian of the quantum system
is expressed:

τ(λ) = StrT (λ) =
3∑
i=1

(−)p(i) Tii(λ) = A1(λ) + εA2(λ) +A3(λ). (4.6)

In particular, the Hamiltonians (2.12) can also be derived by the well known relation

H = α ∂
∂λ
(ln τ(λ))λ=0. (4.7)

A detailed exposition of the graded quantum inverse scattering method can be found in
[22].

In this section we will derive the BA equations of 19-vertex models presented in section 2
using the algebraic BA developed by Tarasov [16] and generalized recently by Martins and
Ramos [23]. To do this we need the commutation relations for entries of the monodromy matrix
which are derived from the fundamental relation (4.1). Here these commutation relations do
not share a common structure. Therefore, we only write some of them in the text and recall
(4.1) to obtain the remaining ones.
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First of all, let us observe that for each row state one can define the magnon number
operator which commutes with the transfer matrix of the models

[τ(λ),M] = 0 M =
N∑
k=1

Mk Mk =
 0 0 0

0 1 0
0 0 2

 . (4.8)

This is the analogue of the operatorSzT used in the previous section and the relation between
M and the spin totalSzT is simplyM = N − SzT . Once again, the Hilbert space can be broken
down into sectorsH(N)M . In each of these sectors, the transfer matrix can be diagonalized
independently,τ(λ)9M = 3M9M . We will now start to diagonalizeτ(λ) in every sector:

4.1. SectorM = 0

Let us consider the highest vector of the monodromy matrixT (λ) in a lattice ofN sites as the
even (bosonic) completely unoccupied state

90 ≡ |0〉 = ⊗Nk=1

 1
0
0


k

. (4.9)

It is the only state in the sector withM = 0. Using (4.5) we can compute the action of the
matrix elements ofT (λ) on this reference state:

A1(λ) |0〉 = xN1 (λ) |0〉 A2(λ) |0〉 = xN2 (λ) |0〉 A3(λ) |0〉 = xN3 (λ) |0〉
Ck(λ) |0〉 = 0 Bk(λ) |0〉 6= {0, |0〉} k = 1, 2, 3.

(4.10)

Therefore in the sectorM = 0,90 is the eigenstate ofτ(λ) = A1(λ) + εA2(λ) +A3(λ) with
eigenvalue

30(λ) = xN1 (λ) + εxN2 (λ) + xN3 (λ). (4.11)

Here we observe that the action of the operatorsB1(λ),B2(λ) andB3(λ) on the reference state
will give us new states which lie in sectors withM 6= 0.

4.2. SectorM = 1

In this sector we have the statesB1(λ) |0〉 andB3(λ) |0〉. SinceB3(λ) |0〉 ∝ B1(λ) |0〉, we seek
an eigenstate of the form

91(λ1) = B1(λ1) |0〉. (4.12)

The action of the operatorτ(λ) on this state can be computed with the aid of the following
commutation relations:

A1(λ) B1(µ) = z(µ− λ)B1(µ)A1(λ)− x5(µ− λ)
x2(µ− λ)B1(λ)A1(µ) (4.13)

A2(λ) B1(µ) = ε z(λ− µ)
ω(λ− µ)B1(µ)A2(λ)− z(λ− µ)

ω(λ− µ)
1

y(µ− λ)B2(µ)C1(λ)

−ε y5(λ− µ)
x2(λ− µ)B1(λ)A2(µ) +

y5(λ− µ)
x2(λ− µ)

1

y(λ− µ)B2(λ) C1(µ)

+
1

y(λ− µ)B3(λ)A1(µ) (4.14)

A3(λ) B1(µ) = x2(λ− µ)
x3(λ− µ)B1(µ)A3(λ)− ε

y(λ− µ)B3(λ)A2(µ)

+
x5(λ− µ)
x3(λ− µ)B2(µ)C3(λ)− y7(λ− µ)

x3(λ− µ)B2(λ) C3(µ). (4.15)
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The ratio functions which appear in the commutation relations are defined by

z(λ) = x1(λ)

x2(λ)
ω(λ) = ε x1(λ) x3(λ)

x3(λ) x4(λ)− x6(λ) y6(λ)

y(λ) = x3(λ)

y6(λ)
y(−λ) = ε x3(λ) x4(λ)− x6(λ) y6(λ)

x7(λ) y6(λ)− x3(λ) x6(λ)
.

(4.16)

Whenτ(λ) act on91(λ1), the corresponding eigenvalue equation has two unwanted terms:

τ(λ)91(λ1) = (A1(λ) + εA2(λ) +A3(λ))91(λ1)

=
[
z(λ1− λ) xN1 (λ) + ε2 z(λ− λ1)

ω(λ− λ1)
xN2 (λ) +

x2(λ− λ1)

x3(λ− λ1)
xN3 (λ)

]
91(λ1)

−
[
x5(λ1− λ)
x2(λ1− λ)x

N
1 (λ1) + ε2y5(λ− λ1)

x2(λ− λ1)
xN2 (λ1)

]
B1(λ) |0〉

+ ε

[
1

y(λ− λ1)
xN1 (λ1)− 1

y(λ− λ1)
xN2 (λ1)

]
B3(λ) |0〉. (4.17)

From the matrix elements of 19-vertex models (2.7)–(2.9) we can see thatx5(λ)/x2(λ) =
−y5(−λ)/x2(−λ). Therefore the unwanted terms vanish and91(λ1) is an eigenstate ofτ(λ)
with eigenvalue

31(λ, λ1) = z(λ1− λ) xN1 (λ) + ε2 z(λ− λ1)

ω(λ− λ1)
xN2 (λ) +

x2(λ− λ1)

x3(λ− λ1)
xN3 (λ) (4.18)

provided (
x1(λ1)

x2(λ1)

)N
= ε2 = 1. (4.19)

4.3. SectorM = 2

In the sectorM = 2, we encounter two linearly independent statesB1(λ) B1(µ) |0〉 and
B2(λ) |0〉. (The statesB3B3 |0〉, B1B3 |0〉 andB3B1 |0〉 also lie in the sectorM = 2 but they
are proportional to the stateB1B1 |0〉). We seek eigenstates in the form

92(λ1, λ2) = B1(λ1) B1(λ2) |0〉 +B2(λ1) 0(λ1, λ2) |0〉 (4.20)

where0(λ1, λ2) is an operator-valued function which has to be fixed such that92(λ1, λ2) is
unique state in the sectorM = 2.

Here we observe that the operator-valued function0(λ1, λ2) is the analogue of the weight
functionB(ξ1, ξ2) of equation (3.17).

It was demonstrated in [16] that92(λ1, λ2) is unique provided it is ordered in a normal
way: in general, the operator-valued function9n(λ1, . . . , λn) is a composite of normal-ordered
monomials. A monomial is normally ordered if in it all elements of the typeBi(λ)are on the left,
and all elements of the typeCj(λ) are on the right of all elements of the typeAk(λ).Moreover,
the elements of one given type have standard ordering:Ti1j1(λ1) Ti2j2(λ2) . . . Tinjn(λn). For a
given sectorM = n,9n(λ1, . . . , λn) is unique.

From the commutation relation

B1(λ) B1(µ) = ω(µ− λ)
[
B1(µ)B1(λ)− 1

y(µ− λ)B2(µ)A1(λ)

]
+

1

y(λ− µ)B2(λ)A1(µ)

(4.21)

we can see that (4.21) will be normally ordered if it satisfies the following swap condition:

92(λ2, λ1) = ω(λ1− λ2)92(λ1, λ2). (4.22)
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This condition fixes0(λ1, λ2) in equation (4.20) and the eigenstate ofτ(λ) in the sectorM = 2
has the form

92(λ1, λ2) = B1(λ1) B1(λ2) |0〉 − 1

y(λ1− λ2)
B2(λ1) A1(λ2) |0〉. (4.23)

The action of a transfer matrix on the states of the form (4.23) is more laborious. In addition to
(4.13)–(4.15) and (4.21) we need appeal to (4.1) to derive eight more commutation relations:

A1(λ) B2(µ) = x1(µ− λ)
x3(µ− λ)B2(µ)A1(λ)− x7(µ− λ)

x3(µ− λ)B2(λ)A1(µ)

−ε x6(µ− λ)
x3(µ− λ)B1(λ) B1(µ) (4.24)

A2(λ) B2(µ) = z(λ− µ) z(µ− λ)B2(µ)A2(λ)

+
y5(λ− µ)
x2(λ− µ)

[
B1(λ) B3(µ)− εB3(λ) B1(µ) +

y5(λ− µ)
x2(λ− µ)B2(λ)A2(µ)

]
(4.25)

A3(λ) B2(µ) = x1(λ− µ)
x3(λ− µ)B2(µ)A3(λ)− y7(λ− µ)

x3(λ− µ)B2(λ)A3(µ)

− ε

y(λ− µ)B3(λ) B3(µ) (4.26)

C1(λ) B1(µ) = εB1(µ)C1(λ) +
y5(λ− µ)
x2(λ− µ) [A1(µ)A2(λ)− A1(λ)A2(µ)] (4.27)

C3(λ) B1(µ) = ε x4(λ− µ)
x3(λ− µ)B1(µ)C3(λ)− x7(λ− µ)

x3(λ− µ)B1(λ) C3(µ)

+
1

y(λ− µ) [A1(µ)A3(λ)− A2(λ)A2(µ)] +
x6(λ− µ)
x3(λ− µ)B2(µ)C2(λ) (4.28)

B1(λ) B2(µ) = 1

z(λ− µ)B2(µ)B1(λ) +
y5(λ− µ)
x1(λ− µ)B1(µ)B2(λ) (4.29)

B1(λ) B3(µ) = εB3(µ)B1(λ)− y5(λ− µ)
x2(λ− µ)B2(µ)A2(λ) +

x5(λ− µ)
x2(λ− µ)B2(λ)A2(µ) (4.30)

B2(λ) B1(µ) = 1

z(λ− µ)B1(µ)B2(λ) +
x5(λ− µ)
x1(λ− µ)B2(µ)B1(λ). (4.31)

Here we observe that in this approach the final action ofτ(λ) on normally ordered states must
be normal ordered. This implies an increasing use of commutation relations needed for the
diagonalization ofτ(λ). For example, the action of the operatorA1(λ) on92(λ1, λ2) has the
form

A1(λ)92(λ1, λ2) = z(λ10) z(λ20) x
N
1 (λ)92(λ1, λ2)− x5(λ10)

x2(λ10)
z(λ21) x

N
1 (λ1) B1(λ) B1(λ2) |0〉

−x5(λ20)

x2(λ20)

z(λ12)

ω(λ12)
xN1 (λ2) B1(λ) B1(λ1) |0〉

+

(
z(λ10)

ω(λ10)

x5(λ20)

x2(λ20)

1

y(λ01)
+
x7(λ10)

x3(λ10)

1

y(λ12)

)
xN1 (λ1) x

N
1 (λ2) B2(λ) |0〉 (4.32)
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whereλab = λa − λb, a 6= b = 0, 1, 2, with λ0 = λ. Here we have used the following
identities satisfied by the matrix elements of these 19-vertex models:

z(λab)

ω(λab)

x5(λcb)

x2(λcb)
− ε x6(λab)

x3(λab)

1

y(λac)
= x5(λab)

x2(λab)

x5(λca)

x2(λca)
+
z(λac)

ω(λac)

x5(λcb)

x2(λcb)

z(λab)
x5(λcb)

x2(λcb)

1

y(λab)
+
x1(λab)

x3(λab)

1

y(λac)
= z(λab) z(λcb) 1

y(λac)

ω(λab) ω(λba) = 1 (a 6= b 6= c).

(4.33)

Similarly, for the operatorA2(λ) we have

A2(λ)92(λ1, λ2) = ε2 z(λ01)

ω(λ01)

z(λ02)

ω(λ02)
xN2 (λ)92(λ1, λ2)

−ε2y5(λ02)

x2(λ02)
z(λ21) x

N
2 (λ2) B1(λ) B1(λ1) |0〉

−ε2y5(λ01)

x2(λ01)

z(λ12)

ω(λ12)
xN2 (λ1) B1(λ) B1(λ2) |0〉

+z(λ21)
1

y(λ01)
xN1 (λ1) B3(λ) B1(λ2) |0〉

+
z(λ12)

ω(λ12)

1

y(λ02)
xN1 (λ2) B3(λ) B1(λ1) |0〉

+ε2y5(λ01)

x2(λ01)

(
y5(λ21)

x2(λ21)

1

y(λ01)
+
z(λ01)

ω(λ01)

1

y(λ02)
− y5(λ01)

x2(λ01)

1

y(λ12)

)
×xN1 (λ2) x

N
2 (λ1) B2(λ) |0〉

+ε2 1

y(λ01)

(
z(λ01)

y5(λ02)

x2(λ02)
− y5(λ01)

x2(λ01)

y5(λ02)

x2(λ02)

)
xN1 (λ1) x

N
2 (λ2) B2(λ) |0〉.

(4.34)

In this case we have used more two identities:

z(λab)

ω(λab)

1

y(λac)
+
y5(λcb)

x2(λcb)

1

y(λab)
= y5(λab)

x2(λab)

1

y(λbc)
+
z(λbc)

ω(λbc)

1

y(λac)

z(λcb)
y5(λac)

x2(λac)
+
y5(λab)

x2(λab)

y5(λbc)

x2(λbc)
= z(λab) y5(λac)

x2(λac)

a 6= b 6= c.

(4.35)

Finally, forA3(λ) we obtain

A3(λ)92(λ1, λ2) = x2(λ01)

x3(λ01)

x2(λ02)

x3(λ02)
xN3 (λ)92(λ1, λ2)

−ε2 z(λ12)

ω(λ12)

1

y(λ01)
xN2 (λ1) B3(λ) B1(λ2) |0〉

−ε2z(λ21)
1

y(λ02)
xN2 (λ2) B3(λ) B1(λ1) |0〉

+

(
y7(λ01)

x3(λ01)

1

y(λ12)
− y5(λ01)

x3(λ01)

1

y(λ02)

)
xN2 (λ1) x

N
2 (λ2) B2(λ) |0〉. (4.36)

Here we have also used the identities (4.33) and (4.35).
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From these relations one can see that all unwanted terms ofτ(λ)92(λ1, λ2) vanish. It
means that92(λ1, λ2) is an eigenstate of the transfer matrixτ(λ) with eigenvalue

32(λ, λ1, λ2) = z(λ10) z(λ20) x
N
1 (λ) + ε3 z(λ01)

ω(λ01)

z(λ02)

ω(λ02)
xN2 (λ) +

x2(λ01)

x3(λ01)

x2(λ02)

x3(λ02)
xN3 (λ)

(4.37)

provided the rapiditiesλ1 andλ2 satisfy the BA equations(
x1(λa)

x2(λa)

)N
= ε3z(λab)

z(λba)
ω(λba) a 6= b = 1, 2. (4.38)

4.4. General sector

The generalization of the above results to sectors with more than two particles proceeds through
the factorization properties of the higher-order phase shifts discussed in the previous section.
Therefore, at this point we shall present the general result: in a generic sectorM = n, we have
n− 1 swap conditions

9n(λ1, . . . , λi−1, λi+1, λi, . . . , λn) = ω(λi − λi+1)9n(λ1, . . . , λi−1, λi, λi+1, . . . , λn)

(4.39)

which yield then − 1 operator-valued functions0i(λ1, . . . , λn). The corresponding normal-
ordered state9n(λ1, . . . , λn) can be written with the aid of a recurrence formula [16]:

9n(λ1, . . . , λn) = 8n(λ1, . . . , λn) |0〉 (4.40)

where

8n(λ1, . . . , λn) = B1(λ1)8n−1(λ2, . . . , λn)

−B2(λ1)

n∑
j=2

1

y(λ1− λj )
n∏

k=2,k 6=j
Z(λk − λj )8n−2(λ2, . . . , λ̂j , . . . , λn)A1(λj )

(4.41)

with the initial condition80 = 1,81(λ) = B1(λ).
The scalar functionZ(λk − λj ) is defined by

Z(λk − λj ) =
{
z(λk − λj ) if k > j

z(λk − λj ) ω(λj − λk) if k < j .
(4.42)

The action of the operatorsAi(λ), i = 1, 2, 3 on the operators8n have the following
normal-ordered form:

A1(λ)8n(λ1, . . . , λn) =
n∏
k=1

z(λk − λ)8n(λ1, . . . , λn)A1(λ)

−B1(λ)

n∑
j=1

x5(λj − λ)
x2(λj − λ)

n∏
k=1,k 6=j

Z(λk − λj )8n−1(λ1, . . . , λ̂j , . . . , λn)A1(λj )

+B2(λ)

n∑
j=2

j−1∑
l=1

Gjl(λ, λl, λj )

n∏
k=1,k 6=j,l

Z(λk − λl)Z(λk − λj )

×8n−2(λ1, . . . , λ̂l, . . . , λ̂j , . . . , λn)A1(λl) A1(λj ) (4.43)

whereGjl(λ, λl, λj ) are scalar functions defined by

Gjl(λ, λl, λj ) = x7(λl − λ)
x3(λl − λ)

1

y(λl − λj ) +
z(λl − λ)
ω(λl − λ)

x5(λj − λ)
x2(λj − λ)

1

y(λ− λl) . (4.44)
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For the action ofA3(λ) we have a similar expression

A3(λ)8n(λ1, . . . , λn) =
n∏
k=1

x2(λ− λk)
x3(λ− λk)8n(λ1, . . . , λn)A3(λ)

−εnB3(λ)

n∑
j=1

1

y(λ− λj )
n∏

k=1,k 6=j
Z(λj − λk)8n−1(λ1, . . . , λ̂j , . . . , λn)A2(λj )

+B2(λ)

n∑
j=2

j−1∑
l=1

Hjl(λ, λl, λj )

n∏
k=1,k 6=j,l

Z(λj − λk)Z(λl − λk)

×8n−2(λ1, . . . , λ̂l, . . . , λ̂j , . . . , λn)A2(λl) A2(λj ) (4.45)

where the scalar functionsHjl(λ, λl, λj ) are given by

Hjl(λ, λl, λj ) = y7(λ− λl)
x3(λ− λl)

1

y(λl − λj ) −
y5(λ− λl)
x3(λ− λl)

1

y(λ− λj) . (4.46)

The action of the operatorA2(λ) is more cumbersome

A2(λ)8n(λ1, . . . , λn) = εn
n∏
k=1

z(λ− λk)
ω(λ− λk)8n(λ1, . . . , λn)A2(λ)

−εnB1(λ)

n∑
j=1

y5(λ− λj )
x2(λ− λj )

n∏
k=1,k 6=j

Z(λj − λk)8n−1(λ1, . . . , λ̂j , . . . , λn)A2(λj )

+B3(λ)

n∑
j=1

1

y(λ− λj )
n∏

k=1,k 6=j
Z(λk − λj )8n−1(λ1, . . . , λ̂j , . . . , λn)A1(λj )

+εnB2(λ)

{ n∑
j=2

j−1∑
l=1

Yjl(λ, λl, λj )

n∏
k=1,k 6=j,l

Z(λk − λl)Z(λj − λk)

×8n−2(λ1, . . . , λ̂l, . . . , λ̂j , . . . , λn)A1(λl) A2(λj )

+
n∑
j=2

j−1∑
l=1

Fjl(λ, λl, λj )

n∏
k=1,k 6=j,l

Z(λl − λk)Z(λk − λj )

×8n−2(λ1, . . . , λ̂l, . . . , λ̂j , . . . , λn)A1(λj ) A2(λl)

}
(4.47)

where we have two more scalar functions

Fjl(λ, λl, λj ) = y5(λ− λl)
x2(λ− λl)

{
y5(λl − λj )
x2(λl − λj )

1

y(λ− λl) +
z(λ− λl)
ω(λ− λl)

1

y(λ− λj )
−y5(λ− λl)
x2(λ− λl)

1

y(λl − λj )
}

(4.48)

Yjl(λ, λl, λj ) = 1

y(λ− λl)
{
z(λ− λl)y5(λ− λj )

x2(λ− λj ) −
y5(λ− λl)
x2(λ− λl)

y5(λl − λj )
x2(λl − λj )

}
. (4.49)

From these relations immediately follows that9M(λ1, . . . , λM) are the eigenstates ofτ(λ)
with eigenvalues

3M = x1(λ)
N

M∏
a=1

z(λa − λ) + εM+1x2(λ)
N

M∏
a=1

z(λ− λa)
ω(λ− λa) + x3(λ)

N
M∏
a=1

x2(λ− λa)
x3(λ− λa) (4.50)
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provided their rapiditiesλi, i = 1, . . . ,M satisfy the BA equations(
x1(λa)

x2(λa)

)N
= εM+1

M∏
b 6=a=1

z(λa − λb)
z(λb − λa)ω(λb − λa) a = 1, 2, . . . ,M. (4.51)

To conclude this section we remark that equations (4.50) and (4.51) reproduce the known
results in the literature: using (2.8) we reproduce the BA solution of the IK model [16] and
using (2.7) they are the BA solution for the ZF model derived by a fusion procedure in [13–15].
Specifically, in the case of the rational solution and forε = −1 we obtain previous results
derived by the analytical [20] and algebraic [23] BA approach for the rationalosp(1|2) vertex
model. Furthermore, by using equation (4.7) we recover the expressions derived in the previous
section via the coordinate BA.

5. Conclusion

In the first part of this paper we applied the coordinate BA to find the spectra of Hamiltonians
associated with three 19-vertex models, including a graded model. This procedure was carried
out for periodic boundary conditions.

We believe that the method here presented could also be applied for Hamiltonians
associated with higher-states vertex models. For instance, in the quantum spin-chains = 3

2

XXZ model we have four states:
∣∣k[ 3

2

]〉
,
∣∣k[ 1

2

]〉
,
∣∣k[− 1

2

]〉
and

∣∣k[− 3
2

]〉
. It means that the state

|k( 1
2

)〉 can be parametrized by a plane wave and the states
∣∣k[− 1

2

]〉
and

∣∣k[− 3
2

]〉
as two and

three states
∣∣k[ 1

2

]〉
at the same site, respectively, multiplied by some weight functions.

These weight functions are responsible for the factorized form of the phase shift of two
particles (3.38). In the ZF model we do not have a factored form for the two-pseudoparticle
phase shift because its weight function (3.17) is a constant. This means that the state|k[−]〉
behaves exactly as two states|k[0]〉 at the same site. This is in agreement with the fact that the
ZF model can be constructed by a fusion procedure of the two six-vertex model.

In the second part of this paper we have applied the algebraic BA to find the spectra of the
transfer matrices of these three-state vertex models. The method here presented was developed
by Tarasov [16] and generalized by Martins [21, 23]. It is general enough to include the ZF
model as well as the gradedosp(1|2) model.

There are several issues left for future works. A natural extension of this work is to
consider these Bethe ansätze with open boundary conditions via reflection matrices. The
transfer matrix of the ZF model with the most general diagonal reflection matrix has been
diagonalized by Mezincescuet al [24] by generalizing the fusion approach used to solve the
corresponding model with periodic boundaries. BA equations for both the ZF model and IK
model with open boundaries were derived by Yung and Batchelor in [25]. Nevertheless, based
on the Tarasov–Martins approach, the algebraic BA of the IK model with a diagonalK-matrix
was derived recently by Fan [26].
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